
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

�Correspond
E-mail addr
INTEGRATION, the VLSI journal 40 (2007) 274–284

www.elsevier.com/locate/vlsi
A fast algorithm for rectilinear block packing based on
selected sequence-pair

Kunihiro Fujiyoshi, Chikaaki Kodama�, Akira Ikeda

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan

Received 3 December 2004; received in revised form 10 January 2006; accepted 11 January 2006
Abstract

In this paper, we present a method of rectilinear block packing using selected sequence-pair (SSP), a rectangle packing representation.

We also propose a fast algorithm to obtain a rectilinear block packing in Oððpþ 1ÞnÞ time keeping all the constraints imposed by a given

SSP. Here, p is the number of rectilinear blocks excluding rectangles and n is that of rectangle sub-blocks obtained by partitioning each

rectilinear block. So far, the fastest method based on a sequence-pair required Oðn2 þ ‘3Þ time, where ‘ is the number of rectilinear

blocks. If p is constant, the proposed algorithm requires OðnÞ time, which is equal to the trivial lower bound of the time complexity for

decoding. The effectiveness of the proposed method was confirmed by the experimental comparisons, especially when p is constant.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The first stage of VLSI physical design is the floor-
planning, that is, a rough placement of major circuit
components such as modules and wires. To accomplish a
design of high-performance VLSI, several strict constraints
(such as timing, delay, area, power and others) should be
considered, and macro-library, namely, macro-cells
(blocks) such as IP should be effectively utilized. In such
a case, some modules are not rectangles but rectilinear
blocks such as modules with alignment constraints, reused
macro-cells, a thermal countermeasure module placement
(adjoining heat up and non-heat up modules) and so on.
Therefore, a method of packing blocks including rectilinear
shape is desired.

Several ideas for a convex rectilinear block packing [1–3]
and L-shaped and T-shaped block packing [4–6] were
proposed but these methods are impossible to represent
arbitrary rectilinear block packing. Several methods of
representing arbitrary rectilinear block packing were
proposed [7–10]. However, some blocks may overlap [8]
e front matter r 2006 Elsevier B.V. All rights reserved.
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and a certain kind of packing is impossible to represent
[7,9,10].
In [11], a method of representing a rectilinear block

packing based on sequence-pair [12] was proposed. Each
rectilinear block is partitioned into rectangle sub-blocks by
horizontal and vertical lines since a sequence-pair can
handle only rectangle blocks. Note that if a rectilinear
block is in the shape of rectangle, it is regarded as a sub-
block itself. Also in [11], an algorithm to obtain a
rectilinear block packing in Oðn3Þ time was proposed (n is
the number of rectangle sub-blocks) keeping all the
constraints imposed by a given sequence-pair. However,
the time complexity is very big for practical use. Recently, a
method to obtain a rectilinear block packing in Oðn2 þ ‘3Þ
time was proposed [13] (‘ is the number of rectilinear
blocks). However, it takes a long time to carry out the
algorithm according to the increase of the number of
rectangles.
Another method to obtain a rectilinear block packing in

Oðmn log log nÞ time was proposed in [14],1 where m is not
the number of rectilinear blocks but the number of sets of
H/V-sequential sub-blocks. In [14], ‘‘a rectilinear block is
1Note that we presented the preliminary version of this paper [15] earlier

than [14].
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Fig. 1. Example of rectilinear blocks consisting of H-sequential sub-

blocks. (a) A rectilinear block consisting of a set of H-sequential sub-

blocks fa1; a2; a3; a4g and (b) a rectilinear block consisting of three sets of

H-sequential sub-blocks fb1; b2; b6g, fb3; b6g and fb4; b5; b6g.
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Fig. 2. Example of a feasible TCG T with no corresponding rectilinear

block packing. (a) Cv of T and (b) Ch of T.
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said to be H-sequential (V-sequential) if no vertical
(horizontal) line cuts the block into more than two parts’’.
The blocks partitioned from a H-sequential (V-sequential)
rectilinear block is said to be H-sequential (V-sequential)
sub-blocks. An example of a rectilinear block partitioned
into four H-sequential sub-blocks is shown in Fig. 1(a).
When a rectilinear block is a non-sequential rectilinear
shape, it can be partitioned into multiple sequences of H/V-
sequential sub-blocks. Therefore, m may not be less than
the number of rectilinear blocks since there are rectilinear
blocks consisting of two or more sets of H/V-sequential
sub-blocks. An example of such rectilinear block is shown
in Fig. 1(b). It is easily understood that this block consists
of three sets of H-sequential sub-blocks. Therefore, when
complex rectilinear blocks are packed, it takes a long time
to decode since the value of m becomes big.

Other methods to represent arbitrary shaped rectilinear
block packing using O-tree [16] and TCG [17] were
proposed. Since a method called ‘‘expansion’’ used in [9]
is allowed there, rectilinear blocks may be deformed.
Additionally in [17], there is no packing corresponding to a
feasible TCG shown in Fig. 2. Also, no proofs are shown in
the most of theorems and lemmas, so this is unreliable.

In this paper, we present a method of rectilinear block
packing using a rectangle packing representation called
‘‘selected sequence-pair’’ (SSP) [18]. SSP can represent an
arbitrary rectangle packing and is decodable in linear time
of its size. Also, we propose an efficient algorithm to obtain
a rectilinear block packing in Oððpþ 1ÞnÞ time2 keeping all
the constraints imposed by a given SSP. Time complexity
of our method is close to that of [14] but p is the number of
rectilinear blocks excluding rectangles.3 So, obviously ppm

because m is more than the number of rectilinear blocks as
mentioned before. Hence, when complex rectilinear blocks
are packed, our method is faster than the method of [14].
The proposed method requires only OðnÞ time if p is
constant. Note that obtaining a rectilinear block packing of
n sub-blocks in smaller time complexity than OðnÞ is
theoretically impossible. In the layout design using macro-
2When p ¼ 0, time complexity of our method is reduced to OðnÞ, the

time complexity required to decode SSP.
3Rectangular shape blocks before partitioning, not rectangle sub-blocks

after partitioning.
cells, most of the modules are rectangles and the others are
non-rectangular blocks. The effectiveness of the proposed
method is shown in such cases and confirmed by
experiments.
The organization of this paper is as follows. Section 2

introduces a sequence-pair and an SSP. Section 3 proposes
a new decoding method for a rectilinear block packing.
Section 4 presents experimental results. Section 5 gives
conclusion.

2. Sequence-pair and selected sequence-pair

2.1. Sequence-pair

A sequence-pair (seq-pair) [12] is an ordered pair of Gþ
and G�, where each of Gþ and G� is a permutation of
names of given n blocks. For example, ðGþ;G�Þ ¼
ða b c d ; b d a cÞ is a seq-pair of block set fa; b; c; dg. If
block x is the i’th in Gþ, we denote G�1þ ðxÞ ¼ i. Similar
notation is also used for G�. To help intuitive under-
standing, we use a notation such as ðGþ;G�Þ ¼
ð� � � a � � � b � � � ; � � � a � � � b � � �Þ by which we mean G�1þ ðaÞo
G�1þ ðbÞ and G�1� ðaÞoG�1� ðbÞ.
A seq-pair imposes a ‘‘horizontal/vertical ðH=V Þ con-

straint’’ for every pair of blocks as follows. For every block
pair fa; bg, a is in the left of b (equivalently, b is in the right
of a) if ðGþ;G�Þ ¼ ð� � � a � � � b � � � ; � � � a � � � b � � �Þ. Similarly, a

is below b (equivalently, b is above a) if
ðGþ;G�Þ ¼ ð� � � b � � � a � � � ; � � � a � � � b � � �Þ. For example, seq-
pair ð1 2 3 4 ; 2 4 1 3Þ has relative position like Fig. 3.
One of the optimal packings under the H/V constraint

can be obtained by applying the well-known longest path
algorithm for vertex weighted directed acyclic graphs.

H=V constraint graph: Based on the horizontal (left of)
constraint imposed by a seq-pair, a directed and vertex-
weighted graph GHðV ;EÞ (V: vertex set, E: directed edge
set) called horizontal constraint graph is constructed as
follows [12]:
(1)
 V: source s, sink t and vertices labeled with module
names.
(2)
 E: ðs;xÞ and ðx; tÞ for each module x, and ðx; x0Þ if and
only if x0 2 fx00jx00 is constrained to ‘‘right of x’’ in the
seq-pairg.
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Fig. 3. A packing represented by seq-pair ð1 2 3 4 ; 2 4 1 3Þ.
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 Vertex-weight: zero for s and t, width of module x for
the other vertices.
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Fig. 4. Examples of a rectangular dissection and its H/V constraint graph

(RD). (a) Rectangular dissection with five rooms. No module is assigned

to the middle room (gray colored room) and (b) H/V constraint graph

(RD). Solid lines show the horizontal constraint graph and broken lines

show the vertical constraint graph.
Similarly, the vertical constraint graph is constructed
using vertical (below) constraints and the height of each
module.

In this paper, in order to distinguish H/V constraint
graph of seq-pair from that of selected sequence-pair
(mentioned later), we call the former ‘‘H/V constraint
graph (SP)’’. Note that the number of edges in H/V
constraint graph (SP) is Oðn2Þ when the number of modules
is n.

Adjacent cross [19]: In seq-pair S, when rectangles a, b,
c, d are put in the order of

S ¼ ð� � � a � � � bc � � � d � � � ; � � � c � � � ad � � � b � � �Þ or

S ¼ ð� � � a � � � bc � � � d � � � ; � � � b � � � da � � � c � � �Þ,

we say ‘‘S has an adjacent cross’’ or ‘‘a, b, c, d make an
adjacent cross’’ [19].

In the former S, b and c are adjacent in this order in Gþ.
Also, a and d are adjacent in this order in G�. So, we
denote the adjacent cross as b c=a d. Also, in the latter S,
we denote it as b c=d a. Seq-pair ð1 2 3 4 ; 2 4 1 3Þ of Fig. 3
has an adjacent cross 2 3=4 1. The number of adjacent
crosses included in a seq-pair with n elements is proved to
be at most ðn� 2Þ=2

� �
ðn� 2Þ=2
� �

[19]. Takashima et al.
proved that the necessary number of adjacent crosses for
representing an arbitrary packing of n rectangles is at most
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n� 1
p� �

[21].

2.2. Selected sequence-pair (SSP)

A ‘‘selected sequence-pair’’ (SSP) [18] is defined as a seq-
pair with adjacent crosses of n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n� 1
p� �

or less, where n

is the number of rectangles. The outstanding merits of SSP
are as follows: (1) The smallest packing based on a given
SSP can be obtained in OðnÞ time, which is faster than
based on seq-pair (Oðn log log nÞ time [22]). (2) An
arbitrary packing can be represented by SSP. (3) The total
number of SSP representation of size n is less than that of
the same-sized seq-pair when the number of modules is
more than four. An efficient MOVE operation for SSP was
recently proposed in [18,23]. Therefore, we can search a
good solution more efficiently than seq-pair, using
Simulated Annealing with the MOVE operation.

From a given SSP with k adjacent crosses and n

rectangles, we can obtain one of the optimal packing
under the H/V constraint of the SSP in Oðnþ kÞ time by
the following procedure. Note that a packing can be
obtained from SSP in OðnÞ time as a consequence since
kpn� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n� 1
p

c.

Procedure SSP Decoder [18].

Step 1: Enumerate all adjacent crosses on a given SSPS.
Step 2: Based on the position of adjacent crosses and the

order of inserting dummy rectangles obtained by Step 1,
insert k dummy rectangles in S to remove all adjacent
crosses. Then S0 without adjacent crosses is obtained. The
size of S0 is nþ k.

Step 3: Convert S0 to a corresponding Q-sequence
(rectangular dissection representation [24]).

Step 4: Based on a rectangular dissection obtained by
decoding the Q-sequence, make H/V constraint graph [25]
and obtain a rectangle packing.
ðProcedure SSP Decoder EndÞ

The time complexity in each step is Oðnþ kÞ.
If an SSP S ¼ ð1 2 3 4 5 6; 4 2 6 3 1 5Þ is inputted in

SSP Decoder, two adjacent crosses 4 5=6 3 and 3 4=2 6
are found by Step 1. In Step 2, based on the obtained
position of adjacent crosses and the order of dummy
rectangle insertion by Step 1, dummy rectangles D1 and D2

are inserted to remove all adjacent crosses. Then, an SSP
without adjacent cross S0 ¼ ð1 2 3D2 4D1 5 6; 4 2D2 6D1

3 1 5Þ is obtained.
After S0 is converted to Q-sequence Q in Step 3, a

rectangular dissection (mentioned later in Section 2.2.1) is
obtained from Q and a rectangle packing is obtained from
the rectangular dissection [18]. As a result, a rectangle
packing based on S0 is obtained in Step 4. Please confirm
the correctness in detail (why it can be realized in Oðnþ kÞ

time) by referring to [18].

2.2.1. Rectangular dissection

A rectangular dissection is a dissection of a rectangle into
a set of rectangular regions called rooms with exclusive
assignment of modules to rooms (no two modules share a
single room) [25]. An example of rectangular dissection is
shown in Fig. 4(a). Each dissection line and edge of the
bounding rectangle is called a seg.
Based on a rectangular dissection obtained by a

decoding method of Q-sequence in Step 4 of SSP Deco-

der, we can obtain horizontal (vertical) constraint graph
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Fig. 5. Example of relative position edge pair. (a) Horizontal relative

position edge pair and (b) vertical relative position edge pair.
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[25] as follows. Each vertical (horizontal) seg corresponds to a
vertex in the horizontal (vertical) constraint graph
and each room corresponds to a weighted edge ðu; vÞ,
where u is the vertex corresponding to the left (bottom) side
of the room and v is the vertex corresponding to the right
(top) side of the room. The weight of an edge corresponding
to a room with an assigned module is the width (height) of the
module, and that of an edge corresponding to a room with no
module assigned is zero. An example of H/V constraint graph
corresponding to Fig. 4(a) is shown in Fig. 4(b).

x ðyÞ coordinate of the lower left corner of each room,
actually of each module, is set to the longest path value
from the source in the horizontal (vertical) constraint
graph.

In this paper, H/V constraint graph obtained from a
rectangular dissection is called ‘‘H/V constraint graph
(RD)’’. The number of edges in H/V constraint graph (RD)
is OðnÞ when the number of rooms is n since H/V constraint
graph (RD) is a planer graph [25].

2.3. Conventional method of rectilinear block packing

A polygonal block whose outside frame consists of
horizontal and vertical lines only is called a ‘‘rectilinear

block’’. A rectangular shape block is regarded as a kind of a
rectilinear block. In [11], a seq-pair-based method of
representing rectilinear block packing was proposed.
Basically, only rectangle blocks can be handled by a seq-
pair, so each rectilinear block is partitioned into rectangles
by horizontal and/or vertical lines. These rectangle blocks
are called ‘‘sub-blocks’’. If a rectilinear block is in the shape
of rectangle, it is regarded as a sub-block itself. An example
is shown in Fig. 6(a).

A procedure to obtain a bottom left corner packing
based on H/V constraints imposed by a given seq-pair is as
follows. First, H/V constraint graphs (SP) are made from a
seq-pair as mentioned in Section 2.1. The weight of each
vertex moves to all of its output edges. Then, edges called
‘‘relative position edge pair’’ are added to the graphs in
order to pack and align simultaneously.

Let a1; a2; . . . ; a‘ be sub-blocks of a rectilinear block a.
When ai and aiþ1 are adjacent parts of a common
rectilinear block, a relative position edge pair consisting
of directed weighted edges ðai; aiþ1Þ and ðaiþ1; aiÞ is
introduced into both H/V constraint graphs (SP). The
weight of a directed edge ðai; aiþ1Þ on horizontal constraint
graph is defined as X ðaiþ1Þ � X ðaiÞ, where X ðaiÞ is the
difference of x coordinate from the leftmost vertical edge of
rectilinear block a to that of ai. The weight of a directed
edge ðai; aiþ1Þ on vertical constraint graph is defined as
Y ðaiþ1Þ � Y ðaiÞ, where Y ðaiÞ is the difference of y

coordinate from the lowest horizontal edge of rectilinear
block a to that of ai. The weight of directed edges ðaiþ1; aiÞ

is defined similarly. Clearly, the total edge weight of
relative position edge pair is zero. Fig. 5(a) is an example of
horizontal relative position edge pair, and Fig. 5(b) is an
example of vertical relative position edge pair. We cannot
use the longest path algorithm for DAG since a relative
position edge pair makes a graph cyclic. Ford’s shortest
path algorithm is applied to compute the longest path
length and obtain the coordinates of rectangles.
If all blocks are rectangles, a packing corresponding to

an arbitrary seq-pair always exists. If any non-rectangle
blocks are contained, some seq-pair which has no
corresponding packing may exist. If there is a rectilinear
block packing which keeps all H/V constraints imposed by
a seq-pair, then the seq-pair is said to be ‘‘feasible’’. And a
seq-pair which is not feasible is said to be ‘‘infeasible’’. A
seq-pair is feasible if and only if a positive cycle does not
exist on both H/V constraint graphs.
Let ‘‘DistðvÞ’’ denote the current estimated longest

distance from source to vertex v by Ford’s shortest
path algorithm. Also, let ‘‘Lengthðu; vÞ’’ denote the
weight of a directed edge ðu; vÞ. If we check an edge ðu; vÞ
whose weight satisfies DistðvÞoDistðuÞ þ Lengthðu; vÞ, we
make the value of DistðvÞ the sum of DistðuÞ and
Lengthðu; vÞ. We call this operation ‘‘relaxation’’. The
longest path length for each vertex can be calculated or a
positive cycle can be found in Oðn3Þ time by iterating
relaxations for all edges at most n times. Here, n is the
number of sub-blocks.

3. Fast algorithm for rectilinear block packing

The conventional decoding method of rectilinear block
packing [11] based on seq-pair consists of iteration of
relaxation for all edges of H/V constraint graphs (SP) since
Ford’s algorithm is applied to it.
Here, edges can be classified into H/V edges and edges of

relative position edge pairs. The number of H/V edges is

nC2 or less and the number of edges of relative position
edge pairs is less than 2n (n is the number of sub-blocks).
Since time taken for relaxation per one edge is constant,
relaxations for all edges take Oðn2Þ time. Also, since the
relaxations must be iterated n times maximally, the whole
time taken is Oðn3Þ. Hence, if n is big, the execution speed
gets very slow.
A series of relaxations of all H/V edges are equivalent to

the bottom left corner packing method, keeping the
constraints of a seq-pair. Therefore, a series of relaxation
is replaced by a decoding method of SSP.
The maximal necessary number of iteration of relaxation

of all edges can be reduced from n to pþ 1 by using a
procedure mentioned later (p is the number of rectilinear
blocks without rectangular shape blocks). Hence, the
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proposed method obtains a rectilinear block packing in
Oððpþ 1ÞnÞ time, keeping all the constraints imposed
by a given SSP or it judges a given SSP as infeasible in
Oððpþ 1ÞnÞ time.

3.1. Restoring method of rectilinear block

In the proposed method, we use a restoring algorithm,
which can be carried out in linear time of the number of
sub-blocks. To use this algorithm, the following pair of
graphs must be obtained for the given input data in
advance.

H=V restoring graphs: H/V restoring graphs consist of
plural connected components where each connected
component corresponds to one rectilinear block. One of
sub-blocks of each rectilinear block is defined as a root
block and each sub-block corresponds to a vertex. In a
connected component, vertices of a root block and of non-
root blocks are connected by pairs of directed weighted
edges. The weight of edges is defined the same as a relative
position edge pair.

Examples of restoring graphs of a rectilinear block are
shown in Fig. 6(b), where the root block of rectilinear
block a is a3. The restoring method of rectilinear blocks in
this paper decides the position of each sub-block for x and
y direction separately. In the following, only the procedure
for x direction is shown. For y direction, each coordinate
of sub-block can be decided similarly.

Procedure Restoring Rectilinear Block (RRB) for x

Direction.

Step 1: For all edges directed from non-root blocks to
root blocks on H-restoring graph, carry out relaxation.

Step 2: For all edges directed from root blocks to non-
root blocks on H-restoring graph, carry out relaxation.
ðProcedure EndÞ

The object of this procedure is only to restore each
rectilinear block, so the output may not satisfy the
a
a1

a2

a3

(-1,0)(0,0)

(-2,2)

(a)

a1

a2

a3
a1

a2

a3

(c) (d)

(b

Fig. 6. Examples of restoring graphs and restoring a rectilinear block for x dir

horizontal/vertical restoring graphs, (c) initial placement, (d) after moving a3
constraints imposed by SSP. Fig. 6(c)–(e) are examples of
RRB for x direction restoration of a rectilinear block
shown in Fig. 6(a). For easy understanding, y coordinates
are set to the final value.

3.2. Decoding SSP to rectilinear block packing

In the proposed method of a rectilinear block packing,
the bottom left corner packing based on the given SSP is
obtained by computing the coordinates of the lower left
corner of all sub-blocks for x and y direction separately. In
the following, we propose the algorithm PackingX for
calculation of x direction. PackingY is defined for y

direction similarly. PackingX returns x coordinates of the
lower left corner of all sub-blocks and those of vertical
dissection lines, or the input SSP is judged to be infeasible
when x coordinates do not converge by PackingX.
a2

a1
-12

)

ection (root

in Step 1 an
PackingX (SSP S, width of each rectangle, horizontal
restoring graph Rx,# rectilinear block p)f
variable: A vector representing x coordinate of each sub-

block and vertical dissection line: x½ �;
Obtain a horizontal constraint graph (RD) Gx from S

(refer to Sect. 2.2 for details);

Obtain a horizontal constraint graph G0x from Gx by

� inserting a vertex of corresponding sub-block name v

to each edge of Gx,
� giving 0 as the weight of incoming edge of v and

� giving the width of sub-block v as the weight outgoing

edge of v;
Set each element of vector x½ � to 0;
for ði ¼ 1; � � � ; pþ 1Þf

Relative Constraint Imposer(G0x;x½ �);
if (Restoring Rectilinear Block(Rx;x½ �)
¼ ¼ NOT_MOVE)
return x½ �; /* S is feasible */
g

return ‘‘S is infeasible’’;

g
 ðAlgorithmPackingX ENDÞ
a3
1

-2

a2

a1
a3

0
0-2

2

a2

a3
a1

(e)

block a3). (a) Rectilinear block a and sub-blocks a1; a2; a3, (b)
d (e) after moving non-root blocks in Step 2.



ARTICLE IN PRESS

b1

c1
c2

c3

d

b2

a c3

a

d
c2

b2
D1 D2

c1

b1

c3 1

a
3

d
1c2 2

b2 2
D1

0
D2

0

c11

b1
20 0

0

0
0

0 0

00

c3 1

a
3

d
1c2 2

b2 2
D1

0
D2

0

c11

b1
20

0
0

00

0 0

00
0
0

0
3

1

1
5

1

1

33

3

1

3

a b1

c1
c2

c3

d

b2

(d)

(a) (b) (c)

(e)

c3 c2

b2
c1

b1

0

2
3

3
1
-1

1
-1

2

-2

a b1

c1
c2

c3

d

b2

c3 1

a
3

d
1c2 2

b2 2
D1

0
D2

0

c11

b1
20 0

0

00

0 0

0
0
0
0

0
3

1

1
5

1

2

33

4

1

4

a b1

c1
c2

c3

d

b2

(f)

(g)

c3 c2

b2
c1

b1

1 2

2
3

4
1
-1

1
-1

2

-2

a b1

c1
c2

c3

d

b2

c3 1

a
3

d
1c2 2

b2 2
D1

0
D20

c11

b1
20 0

0

0
0

0 0

0
0
0
1

0
3

2

2
5

2

2

33

4

2

4

a b1

c1
c2

c3

d

b2

(h)

Size of sub-blocks
and rectilinear block info.

Horizontal
constraint graph (RD) Gx.

Horizontal
constraint graph (RD) G´x.

Gxwith longest path value for each vertex and its packing.

H-restoring graph after RRB for (d) and its output.

Gx after RCI for (e) and its packing.

H-restoring graph after RRB         for (f) and its output.

Gx after RCI for (g) and packing corresponding to SSP S.

´

´

´

Fig. 7. Example of obtaining rectilinear block packing based on SSP S ¼ ðc3 d c2 b2 a c1 b1; a c3 b1 b2 c2 c1 dÞ for x direction. First, since S has adjacent

crosses, dummy rectangles D1;D2 are inserted to obtain an SSP without adjacent crosses. Then S0 ¼ ðc3 d c2 b2 D1 a D2 c1 b1; a c3 D1 b1 D2 b2 c2 c1 dÞ is

obtained. (b) A horizontal constraint graph (RD) Gx based on S0 is obtained. (c) By inserting vertices corresponding to sub-blocks, a horizontal constraint

graph G0x is obtained. Here, black vertices with attached names correspond to sub-blocks of the same name and white vertices correspond to vertical

dissection lines. (d)–(h) The process of determining x coordinate of the lower left corner of each sub-block.

K. Fujiyoshi et al. / INTEGRATION, the VLSI journal 40 (2007) 274–284 279
In PackingX, ‘‘Restoring Rectilinear Block’’ (RRB)

which restores all rectilinear blocks returns NOT_MOVE

when all sub-blocks do not move.
As mentioned in the beginning of this section, if

relaxation of H/V edges is replaced by a decoding method
of SSP, the input SSP is converted in vain to the same H/V
constraint graph (RD) every time the operation is iterated.
Hence, the conversion from an SSP to a corresponding H/
V constraint graph (RD) is put outside for-loop of
PackingX to speed it up. Inside for-loop, if RRB

does not return NOT_MOVE, sub-blocks may not satisfy
the horizontal constraints imposed by the SSP. So, we
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must move the sub-blocks to coordinates satisfying
them. Coordinates of the lower left corner of sub-
blocks and dissection lines are determined by com-
puting the longest path to each vertex of the constraint
graph. We call this operation ‘‘Relative Constraint

Imposer’’ (RCI).
RCI and RRB take OðnÞ time, respectively. The max-

imum number of required iteration of these operations is
pþ 1. So, the total time complexity is Oððpþ 1ÞnÞ to obtain
a rectilinear block packing based on an SSP or to judge an
SSP as infeasible.

In Fig. 7, an example of packing process of two
rectilinear blocks b; c ðp ¼ 2Þ and rectangles a; d are shown.
For easy understanding, each y coordinate is already set to
the final value. After RRB, overlaps of sub-blocks may be
found as shown in Fig. 7(e). It will be understood that there
are rectilinear blocks not restored yet after RCI as shown in
Fig. 7(d) and (f).
3.3. Validity of the proposed PackingX

Correctness of the proposed method is shown in the
following theorem.

Theorem 1. From a given SSP and restoring graphs, the

proposed decoding algorithm can compute the coordinates of

each sub-block in the bottom left corner packing based on it

if it is feasible, and can find it infeasible otherwise.

Proof. If the given SSP is feasible, there exists a bottom left
corner packing P according to the definition of the feasible
seq-pair. We call the coordinates of each sub-block on P

‘‘final coordinates,’’ which is equal to the longest path
length from the source to the corresponding vertex on the
horizontal and vertical constraint graphs with relative
position edge pairs, as shown in [11].
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Fig. 8. Comparison of decoding speed ðp ¼ 1; ‘ ¼ 3n=4þ 1Þ of SSP (proposed

method in [11]). Each value in explanatory note is slope obtained by the least
As denoted in Section 2.3, each relative position edge
pair connects a pair of vertices corresponding to adjacent
sub-blocks in a rectilinear block. Change every relative
position edge pair to connect vertices of a root block and of
non-root blocks in the rectilinear block.
Here, the weight of edges is set by the same way as

restoring graphs defined in Section 3.1. Then, it is easily
understood that the longest path length to the vertex
corresponding to each sub-block on the horizontal and
vertical constraint graphs obtained by the above operation
is equal to the converged coordinates of the sub-block.
Call a vertex corresponds to a rectangle ‘‘rectangle

vertex,’’ and that corresponds to a root block other than
rectangles ‘‘root vertex’’. We will show only for the x

coordinate in the following, but the similar proof is
possible for the y coordinate.
To each vertex on the constraint graph, there may be

several number of longest paths from the source. Focus on
a longest path which passes the minimum number of root
vertices among them and call the number ‘‘minimum

number of passed root vertices on a longest path,’’ in short
‘‘MNRVLP’’. Note that for a vertex corresponds to a non-
root block, the root vertex for the rectilinear block of it
should not be counted. Because a path cannot go through
any vertex more than once, MNRVLP is not bigger than p,
the number of rectilinear blocks excluding rectangles, and
MNRVLP for a vertex other than rectangle vertex is less
than p.
After the first invocation of ‘‘relative constraint im-

poser,’’ the coordinate of every rectangle vertex whose
MNRVLP is zero has converged to the final value. After
the first invocation of ‘‘restoring rectilinear block,’’ the
coordinate of every vertex whose MNRVLP is zero has
converged to the final value.
If the coordinates of all the vertices whose MNRVLP are

less than k converge to the final value, an invocation of
1000 10000
of sub-blocks

method) with SVX (conventional method in [13]), and ORG (conventional

-square method.
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Fig. 10. Comparison of decoding speed when m ¼ p ¼ n=2.
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‘‘relative constraint imposer’’ makes the coordinates of all
the rectangle vertices whose MNRVLP are k converge to
the final value. In addition to this, an invocation of
‘‘restoring rectilinear block’’ makes the coordinates of all
vertices whose MNRVLP are k converge to the final value.

Hence, by induction, after the pth invocation of
‘‘restoring rectilinear block,’’ the coordinates of all vertices
whose MNRVLP are less than p have converged to the
final value. Also, after the ðpþ 1Þth invocation of ‘‘relative
constraint imposer,’’ the coordinates of all rectangle
vertices whose MNRVLP are not more than p have
converged to the final value. Therefore, if the given SSP
is feasible, the coordinates of all sub-blocks have converged
after the ðpþ 1Þth invocation of ‘‘relative constraint
imposer’’.
If no relaxation occurs in ‘‘restoring rectilinear block,’’ it
is clear that all the coordinates of sub-blocks converge and
the procedure ends. It is obvious that when some relaxation
occurs in the ðpþ 1Þth invocation of ‘‘restoring rectilinear
block,’’ the given SSP can be judged as infeasible. &

4. Experimental results

4.1. Comparison of decoding speed

To compare decoding speed with the conventional
method, the proposed method requiring Oððpþ 1ÞnÞ time
(p and n are the number of rectilinear blocks excluding
rectangles and rectangle sub-blocks, respectively) is im-
plemented in Simulated Annealing with the MOVE
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Fig. 11. Example of L-shaped block packing.
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operation for SSP [18,23] in C++. The conventional
methods [11,13] are implemented in C and C++,
respectively (the methods proposed in [11,13] require
Oðn3Þ and Oðn2 þ ‘3Þ time, respectively, where ‘ is the
number of rectilinear blocks). We carry out experiments to
compare the decoding time by Pentium 4 2.4GHz using
Simulated Annealing program with ultra-high temperature
which hardly rejects adjacent solutions (times for perturba-
tion are excluded).

In the experiments, three kinds of data sets generated
randomly are inputted. (1) a rectilinear block consisting of
n=4 sub-blocks and 3n=4 rectangles, that is, the number of
rectilinear blocks ‘ ¼ ð3=4Þnþ 1 and p ¼ 1. (2) sixteen
rectilinear blocks consisting of n=16 sub-blocks, that is,
‘ ¼ p ¼ 16. (3) n=2 rectilinear blocks consisting of two sub-
blocks, that is, ‘ ¼ p ¼ n=2.

The initial solution of Simulated Annealing in these
methods are packings where all rectilinear blocks are
placed in a row. When an obtained adjacent solution is
infeasible, it is abandoned and another one is obtained
from the present solution. This operation is repeated until
more than 10 000 solutions are obtained separately for
both feasible and infeasible cases and average CPU time
for one solution is calculated in both cases respectively.
Figs. 8, 9 and 10 show the experimental results of the above
three cases when n is 32; 64; . . . ; 8192. The slopes of the
above results calculated by the least-square method are
also shown in Figs. 8, 9 and 10. The abbreviation SSP is for
the proposed method, and SVX and ORG each is for the
conventional method in [11] and [13], respectively. In every
respect, the proposed method is faster than the conven-
tional method except when n ¼ 32 as shown in Figs. 8, 9
and 10.

In (1), since p ¼ 1, ‘ ¼ ð3=4Þnþ 1, the conventional
methods took Oðn3Þ time and the proposed method took
OðnÞ time. In (2), since ‘ ¼ p ¼ 16, SVX and ORG took
Oðn2Þ time and Oðn3Þ time respectively. The proposed
method took OðnÞ time. In (3), since ‘ ¼ p ¼ n=2, the
conventional methods took Oðn3Þ time and the proposed
method took Oðn2Þ time.

In the experimental results of the methods requiring
Oðn2Þ time or Oðn3Þ time, the slopes of the graph in Figs. 8,
9 and 10 are gentler than the time complexity. The reason
is that O-notation states the upper bounds on running
time and our experiments converge on an average in a
Table 1

Comparison of Simulated Annealing search

Method Target CPU

SSP (proposed) Rectilinear Pentium 4 2

seq-pair [11] L-shape Ultra SPAR

(Pentium 4

MP-BSG [2] Core convex Pentium III

seq-pair [5] L-shape Celeron 400

seq-pair [4] L-shape Ultra SPAR

BSG [26] L-shape SS5 80MH
short time except for those requiring OðnÞ time. Besides,
O-notation is available when n and ‘ are big enough, but in
this case, they are not.

4.2. Experimental results using Simulated Annealing

The solution search for the proposed method was carried
out by using Simulated Annealing. Fig. 11 is a packing
result obtained on AthlonXP 1700+ for the same data as
Fig. 10 in [26], where a rotation or reflection is not taken
into consideration. The data consists of 10 L-shape blocks
and 30 rectangles. ‘‘Area [%]’’ is obtained by dividing a
bounding box area by the total area of all blocks.
In Table 1, the experimental results of the proposed and

the conventional methods are compared. It is confirmed
that the result of Simulated Annealing search using the
proposed method is better than that using the conventional
methods. The result of the proposed method is better than
that of the method only for L-shaped block packing [11] by
0.4%. The packing result obtained by the method [11] is
fairly dense.
Time (s) Area (%)

.4GHz 14.92 106.3

C 200MHz 147 106.7

2.4GHz) (16.88)

910MHz 374 108.6

MHz 11 109.3

C 200MHz 297 109.8

z 300 111.5
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Fig. 12. Nineteen blocks (14 rectilinear blocks and five rectangles)

consisting of 43 sub-blocks.

Table 2

Comparison of Simulated Annealing search for 86 blocks

Method Area (%) Average time (s)

Average (min, max)

Proposed 106.8 (105.0, 109.1) 17 943

Conventional [11] 107.0 (106.0, 109.3) 37 160

Conventional [13] 107.1 (105.3, 108.6) 92 322
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A packing result for the same data as Fig. 12(c) in [11] is
shown in Fig. 12. The data consists of 14 rectilinear blocks
and five rectangles, and the total area of all blocks is 353.
The packing took 1251 seconds by AthlonXP 1700+ and
its bounding-box area is 441. On the contrary, Fig. 12(c) in
[11] took 13 446 seconds by Ultra SPARC 200MHz and its
bounding-box area is 468.
In order to confirm the solution search speed including

time required to generate adjacent solutions for Simulated
Annealing, we carried out experimental comparison with
the conventional methods [11,13] under the same annealing
schedule (initial temperature, final temperature, ratio of
falling temperature and the number of times evaluating
every temperature). The input data consists of two sets of
ami33 of MCNC Benchmark and 20 rectilinear blocks of
GSRC Benchmark-Level IV n100_20%. Here, to balance
the size, the height and the width, each of the rectilinear
blocks is enlarged eight times. The scale of data is bigger
than the input data used in Table 1. Average, minimum
and maximum area of the results of five times experiments
for three methods are shown in Table 2 and the best result,
which is obtained by the proposed method, is shown in
Fig. 13. According to Table 2, the proposed method is
faster than the conventional methods in the total time of
obtaining one feasible solution and of decoding the
solution. Compared with the conventional methods using
sequence-pair, the result of the proposed method (using
SSP) is by no means inferior, so the solution space does not
deteriorate by using SSP.
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5. Conclusion

We proposed a method to represent an arbitrary
rectangle packing by using selected sequence-pair (SSP).
We also proposed an efficient decoding method to obtain a
rectilinear block packing in Oððpþ 1ÞnÞ time (n is the
number of sub-blocks and p is the number of rectilinear
blocks excluding rectangles) keeping all the constraints
imposed by a given selected sequence-pair. We confirmed
the proposed method was faster than the conventional
methods by experimental comparisons.
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