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The O-Sequence: Representation of 3D-Dissection
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SUMMARY A 3D-dissection (A rectangular solid dissection) is a dis-
section of a rectangular solid into smaller rectangular solids by planes. In
this paper, we propose an O-sequence, a string of representing any 3D-
dissection which is dissected by only non-crossing rectangular planes. We
also present a necessary and sufficient condition for a given string to be an
O-sequence.
key words: rectangular solid dissection, rectangular dissection, 3D-VLSI,
2D-dissection, 3D-dissection, Q-sequence, O-sequence

1. Introduction

Recently, a 3D-packing and a rectangular solid dissection
(3D-dissection) have attracted attention, and have been stud-
ied much. They will be usable in various fields, e.g. lay-
out design of 3D-VLSI, scheduling of dynamically recon-
figurable processor and so on.

A 3D-packing is an arrangement of rectangular solids
(blocks) into a rectangular solid box without overlapping
each other. Several representations of a 3D-packing have
been proposed [1]–[4], and it is proved that some of them
can represent any 3D-packing.

On the other hand, a 3D-dissection is a dissection of a
rectangular solid (entire rectangular solid) into smaller rect-
angular solids (rooms) by planes (dissection walls). Every
dissection wall is parallel to one of the faces of the entire
rectangular solid. The information about positions of walls
will be usable for some applications. For example, in 3D-
VLSI layout designs, a design method of wiring modules
(blocks in rooms) along walls will be effective, which is sim-
ilar to a method of wiring modules in channels in 2D-VLSI
layout designs.

Lei et al. represent 3D-dissections restricted to a slic-
ing structure by a slicing tree [5]. The slicing structure is
obtained by slicing one region into two regions recursively.
3D-dissections restricted to a slicing structure are dissected
by rectangular dissection walls. Figure 1(a) shows a 3D-
dissection restricted to a slicing structure.

Ma et al. proposed 3D-CBL [6] as a representation of
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Fig. 1 3D-dissection restricted to a slicing structure.

a 3D-dissection which is dissected by only rectangular and
non-crossing walls∗. Since any 3D-dissection restricted to a
slicing structures is dissected by only rectangular and non-
crossing walls, a set of 3D-dissection which is dissected by
only rectangular and non-crossing walls contains any 3D-
dissection restricted to a slicing structure.

3D-CBL can represent any 3D-dissection which is dis-
sected by only rectangular and non-crossing walls. How-
ever, there is not an one-to-one corresponding relation be-
tween a 3D-CBL and a 3D-dissection. So, several codes
of 3D-CBL are decoded into the same 3D-dissection. In
addition, several other codes are not decoded into a 3D-
dissection.

In this paper, we propose a new method representing a
3D-dissection by a string called O-sequence. O-sequence
represents any 3D-dissection which is dissected by only
rectangular and non-crossing walls. There is an one-to-one
corresponding relation between an O-sequence and a 3D-
dissection which is dissected by only rectangular and non-
crossing walls. We also present a necessary and sufficient
condition for a given string to be an O-sequence. In addi-
tion, we present an algorithm for decoding an O-sequence
to a 3D-dissection in O(n) time.

The rest of the paper is organized as follows: In Sect. 2,
we explain 2D-dissection and Q-Sequence, and present
some theorems. In Sect. 3, we explain 3D-dissection which
is dissected by only rectangular and non-crossing walls, and
propose O-Sequence, and present a necessary and sufficient
condition for a given string to be an O-sequence. In Sect. 4,
a size of the solution space of O-Sequence will be shown. In
Sect. 5, experimental results will be shown. Finally, Sect. 6

∗Ma et al. insist that 3D-CBL can represent any 3D-dissection
if it has no empty rooms and no crossing walls. However, there
are 3D-dissections which are dissected by non-rectangular walls,
and can’t be represented by 3D-CBL in fact. For example, a rect-
angular solid dissection shown in Fig. 2(a) can’t be represented by
3D-CBL.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 A 3D-dissection of general structure which is dissected by three
non-rectangular dissection walls into five rooms.

gives our conclusion.

2. Rectangular Dissection and Q-Sequence

In this section, we explain the Q-sequence, a method of
representing a 2D-dissection (a rectangular dissection), pro-
posed by Sakanushi et al. [7], and show an important prop-
erty of Q-sequences.

Consider a rectangle, called the entire rectangle, which
consists of the left, right, top, and bottom segments (segs).
A 2D-dissection with n rooms is dissected by n − 1 internal
segs. A vertical seg and a horizontal seg are not permitted to
cross each other, but can touch to form a T-shaped junction
(T-junction), if at least one of two segs is internal seg. In the
following, we focus on the right-bottom and left-top corners
of the entire rectangle. If both a right seg and a bottom seg
of a room are sides of the entire rectangle, the room is a
right-bottom room and is denoted by RB. If both a left seg
and a top seg of a room are sides of the entire rectangle,
the room is the left-top room and is denoted by LT. For any
room r except RB, two segs meet at the right-bottom corner
of r and one ends there forming a T-junction. The seg that
ends at the T-junction is called the prime seg of r. Note that
RB does not have a prime seg.

Rooms that are adjacent to prime seg of r on the oppo-
site side of r are called the associated rooms of r. If prime
seg of r is a vertical (horizontal) seg, the topmost (leftmost)
of the associated rooms is called the next room of r. It is
known that we can order the rooms as follows: (i) Label
LT with 1; (ii) If room r is labeled with i then label the next
room of r with i+1 (See Fig. 3). It is also known that this or-
dering is equivalent to the following one: Let F1 denote the
original 2D-dissection, and for any positive integer i ≤ n−1,
let Fi+1 be the 2D-dissection obtained from Fi by sliding the
prime seg of LT to the left or top until LT is deleted. Then,
label the room corresponding to LT in Fi with i. This order-
ing is known as Abe ordering [8].

For any positive integer i ≤ n, let r(i) denote the i-th
room in Abe ordering, Q′(i) be the sequence of symbols R
(if the prime seg of r(i) is vertical) or B (if the prime seg is
horizontal) with subscripts of the associated rooms of r(i) in
the decreasing order of Abe ordering, and letQ(i) = r(i)Q′(i)
(Define that Q′(n) is the empty sequence). Q(WR)[Q(WB)] is
the sequence of symbols R[B] with subscripts of the rooms
on the left[top] side of the entire rectangle in the decreasing
order of Abe ordering. Then, we define the Q-sequence Q

Fig. 3 Abe ordering.

Fig. 4 Parenthesis systems.

of a 2D-dissection as

Q = Q(WR)Q(WB)Q(1)Q(2) · · · Q(n).

The Q-sequence of the rectangular dissection shown
in Fig. 3 is R3R1B5B2B11R22B4B33R6R44R55B66, where
r(i) = i. There is one-to-one corresponding relation between
a Q-sequence and a rectangular dissection.

We introduce a U-sequence to describe a necessary and
sufficient condition for a sequence to be a Q-sequence. the
U-sequence is a sequence

U = U(WR)U(WB)1U(1)2U(2) · · ·U(n − 1)n

consisting of 1, 2, . . . , n, Rs, and Bs such that U(WR)
[U(WB)] is a sequence of Rs[Bs].

The following theorem is proved in [7]

Theorem 1: [7] A U-sequence U is a Q-sequence if and
only ifU satisfies the following two conditions:

1. U(i) is a sequence of length at least one, and the se-
quence of positional symbols consisting exclusively of
R or B;

2. Subscripts are assigned to the Rs and Bs so that the
sequence forms parenthesis systems under the ordered
pairing of (Rk, k), and also under the ordered pairing of
(Bk, k) for k = 1, 2, . . . , n (Fig. 4);

�
By condition 2 in Theorem 1, we can represent a 2D-

dissection with

Qsimp = Q(1)Q(2) · · · Q(n)

instead of Q-sequence. We call Qsimp a simplified Q-
sequence.

An algorithm for decoding a given Q-sequence into a
corresponding 2D-dissection is shown in Fig. 5. This algo-
rithm performs in O(n) time.

Then, we show an important property of Q-sequences
for proving Theorem 4 in Sect. 3.
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Theorem 2: The region consisting of rooms r(1), r(2), . . . ,
r(i) is a rectangle if and only if for every positive integer
j < i, Q′( j) contains neither Rr(k) nor Br(k) with k > i.

Proof : Assume that the region consisting of rooms
r(1), r(2), . . . , r(i) is a rectangle, and assume for contradic-
tion that Q′( j) contains Rr(k) for some positive integers j and
k with j < i < k. Then, by condition 2 in Theorem 1,

Q′( j) = · · ·Rr(k) · · ·Rr( j+1),

which means that rooms r(k) and r( j + 1) are right of the
prime seg of r( j) and on the prime seg of r( j) as shown
in Fig. 6. However, the region containing rooms r( j) and
r( j + 1), but not r(k), can not be a rectangle, which is a con-
tradiction. Hence, Q′( j) does not contain Rr(k). Similarly,
we can prove that Q′( j) does not contain Br(k).

If Q′( j) contains neither Rr(k) nor Br(k) with k > i for
every positive integer j < i then all of r(1), r(2), . . . , r(i −
1) are inserted into the region in which r(i) is inserted by
decoding algorithm for a Q-sequence. Hence, the region
consisting of rooms r(1), r(2), . . . , r(i) is a rectangle. �

It is easy to obtain the following theorem from the de-
coding algorithm in Fig. 5.

Theorem 3: Let

Q = Q(r(1))Q(r(2)) · · · Q(r(n)),

be the simplified Q-sequence of a 2D-dissection F, and as-
sume that the region consisting of rooms r(1), r(2), . . . , r(i)
is a rectangle in the 2D-dissection. Then, the simplified Q-
sequence of the 2D-dissection obtained from F by replacing
rooms r(1), r(2), . . . , r(i) with a single room r(0) is

Fig. 5 Algorithm for decoding Q-sequence.

Fig. 6 Region containing rooms r( j) and r( j + 1), but not r(k) is not
rectangular.

Q′ = Q(r(0))Q(r(i + 1)) · · · Q(r(n)),

where Q(r(0)) = r(0)Q′(r(i)). �

3. 3D-Dissection which is Dissected by Rectangular
Walls and O-Sequence

Consider a rectangular solid, called the entire rectangular
solid, which consists of the left, right, front, back, top, and
bottom faces. A dissection of the entire rectangular solid,
called 3D-dissection for short, is a dissection of the rectan-
gular solid into smaller rectangular solids (called rooms) by
planes (called dissection walls).

Throughout the paper, we assume that a 3D-dissection
satisfies the following three conditions:

(i) Every dissection wall is a rectangle;
(ii) Any two dissection walls do not cross each other;
(iii) For any dissection wall w and any line segment l

comprising the boundary of w, there exists exactly one wall
perpendicular to w and containing l, where a “wall” means
a dissection wall or a face of the entire rectangular solid.

Figure 7 shows examples of 3D-dissections satisfy-
ing conditions (i), (ii), and (iii). The 3D-dissection in
Fig. 7(a) is not a slicing-structure, while that in Fig. 7(b) is a
slicing-structure. Notice that any 3D-dissection of a slicing-
structure satisfies (i), (ii), and (iii).

In this paper, two 3D-dissections are regarded to be
equivalent if one can be obtained from the other by sliding
dissection walls without overlapping dissection walls. By
this equivalence relation, the 3D-dissections can be classi-
fied into a finite number of classes. We will propose a string
to each equivalence class.

Dissection wall w is called a prime wall of room r if r
is on w and if the RBB (right-back-bottom) vertex of r is a
vertex of w. By the definition of prime walls, the following
Lemma is trivial:

Lemma 1: Every room except the RBB room has exactly
one prime wall. �
The rooms that are adjacent to r’s prime wall on the opposite
side of r are called the associated rooms of r.

Let D be any 3D-dissection which is dissected into n
rooms. If n ≥ 2, we can erase the LFT(left-front-top) room
in D by sliding the prime wall of the LFT room to the left,
front, or top, which results in a new 3D-dissection which

Fig. 7 3D-dissections which is dissected by only non-crossing
rectangular walls.
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Fig. 8 3D-dissections which are obtained by erasing one LFT room from
original 3D-dissections in Fig. 7.

Fig. 9 3D Abe ordering.

is dissected into n − 1 rooms (See Fig. 8). We can repeat
this operation until the number of rooms is one. Then, each
room in D can be numbered uniquely in the erased order
(The only non-erased room is labeled with n). We call this
ordering 3D Abe ordering.

In this paper, the direction from left[resp. front, top] to
right[back, bottom] is viewed as the x[y, z]-direction.

Consider any 3D-dissection into n rooms. For any pos-
itive integer i ≤ n, let r(i) denote the i-th room in 3D Abe
ordering, O′(i) be the sequence of symbols X (if the prime
wall of r(i) is perpendicular to the x-axis), Y (if the prime
wall is perpendicular to the y-axis), or Z (if the prime wall
is perpendicular to the z-axis) with subscripts of the associ-
ated rooms of r(i) in the decreasing order of 3D Abe order-
ing, and let O(i) = r(i)O′(i) (Define that O′(n) is the empty
sequence). O(WX)[resp. O(WY ) and O(WZ)] is the sequence
of symbols X[Y and Z] with subscripts of the rooms on the
left[front and top] face in the decreasing order of 3D Abe
ordering.

The O-sequence O of the 3D-dissection is defined as
the concatenation of O(WX),O(WY ),O(WZ),O(1),O(2), . . .,
and O(n), that is

O = O(WX)O(WY )O(WZ)O(1)O(2) · · · O(n).

There is an one-to-one corresponding relation between an
O-sequence and a 3D-dissection which is dissected by
only rectangular and non-crossing walls. The O-sequence
of the 3D-dissection shown in Fig. 9 is X4X1Y3Y2Y1

Z4Z2Z11X3X22Z33Y44, where r(i) = i.
Next, we introduce the P-sequence to describe a nec-

essary and sufficient condition for a sequence to be an O-
sequence. A P-sequence is a sequence

P = P(WX)P(WY )P(WZ)1P(1)2P(2) · · · P(n − 1)n

consisting of 1, 2, . . . , n, Xs, Ys, and Zs such that P(WX)
[P(WY ), P(WZ)] is a sequence of Xs[Ys, Zs].

Fig. 10 Parenthesis systems.

Theorem 4: A P-sequence P is an O-sequence if and only
if P satisfies the following three conditions:

1. P(i) is a sequence of length at least one of positional
symbols consisting exclusively of X, Y , or Z;

2. Subscripts are assigned to the Xs, Ys and Zs so that the
sequence forms parenthesis systems under the ordered
pairing of (Xk, k), under the ordered pairing of (Yk, k),
and also under the ordered pairing of (Zk, k) for k =
1, 2, . . . , n (Fig. 10);

3. Let P(i) = Xrm · · · Xr2 Xr1 [resp. P(i) = Yrm · · ·Yr1 ,
P(i) = Zrm · · ·Zr1 ]. For any integer l with rm < l ≤ n, at
least one of the following two conditions is satisfied:

a. P(r1), . . . ,P(rm−1) contain neither Yl nor Zl [Zl nor
Xl, Xl nor Yl];

b. Either of P(rm), . . . ,P(l − 1) contains Xl[Yl, Zl].
�

3.1 Proof of Theorem 4

In 3.1.1, the necessity of conditions 1, 2, and 3 in Theorem 4
will be given in Theorem 5, 6, and 8, respectively. In 3.1.2,
the sufficiency of Theorem 4 will be proved constructively.

3.1.1 Proof of Necessity of Theorem 4

Assume that P-sequence P is an O-sequence of a 3D-
dissection. By the definition of O-sequence, the following
theorem is trivial:

Theorem 5: Condition 1 in Theorem 4 is satisfied. �
It is easy to see that the last characters of P(WX),

P(WY ), and P(WZ) are X1, Y1, and Z1, respectively.
P(WX), P(WY ), andP(WZ) can be represented asP′(WX)X1,
P′(WX)Y1 and P′(WZ)Z1, respectively.

Lemma 2: Let n ≥ 2. If P(1) consists of Xs[resp. Ys and
Zs] then the sequence

P′ = (P′(WX)P(1))P′(WY )P′(WZ)2P(2) · · · P(n − 1)n

[P′ = P′(WX)(P′(WY )P(1))P′(WZ)2P(2) · · · P(n − 1)n

and

P′ = P′(WX)P′(WY )(P′(WZ)P(1))2P(2) · · · P(n − 1)n]

is the O-sequence of the 3D-dissection obtained from the
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original 3D-dissection by sliding the prime wall of room 1
until room 1 is deleted.

Proof : Let F be the 3D-dissection represented by P.
Let F′ be a 3D-dissection obtained from F by sliding the
prime wall of room 1 until room 1 is deleted, and let

P′′ = P′′(WX)P′′(WY )P′′(WZ)2P′′(2) · · · P′′(n − 1)n

be the O-sequence of F′. For any integer i with 2 ≤ i ≤ n−1,
the associated rooms of room i in F is also that in F′, and so
P′′(i) = P(i). Assume that P(1) consists of Xs, that is

P(1) = Xik Xik−1 . . .Xi1 .

Then, it is easy to see that P′′(WY ) = P′(WY ) and P′′(WZ) =
P′(WZ). Moreover, the rooms i1, . . . , ik are on the left face
in F′ because these rooms are associated rooms of room
1 in F, that is on the prime wall of room 1 in F. Let jY
and jZ be rooms such that the prime walls of jY and jZ are
back and bottom on room 1, respectively. Assume without
loss of generality that jY < jZ . Then, i1, . . . , ik ≤ jY since
rooms i1, . . . , ik are left to the prime wall of jk, and must
be deleted before room jY is deleted. On the other hand, if
Xl is in P′(WX) then room l is not deleted before room jY
because l is back of the prime wall of room jY or bottom of
that of room jZ . That is, l ≥ jY . Thus, we conclude that
P′′(WX) = P′(WX)P(1), and hence P′′ = P′. �
Theorem 6: Condition 2 in Theorem 4 is satisfied.

Proof : The theorem is proved by induction on n. The
theorem is true for n = 1 trivially.

Assume that the theorem holds for any n ≤ k, and con-
sider the case when n = k + 1. Assume without loss of
generality that P(1) consists of Xs. By Lemma 2,

P′ = (P′(WX)P(1))P′(WY )P′(WZ)2P(2) · · · P(n − 1)n

is the O-sequence of the 3D-dissection obtained from the
original 3D-dissection by sliding the prime wall of room 1
until room 1 is deleted. Therefore, P′ satisfies condition
2 by the inductive hypothesis, and hence, P also satisfies
condition 2. �

We can use as an O-sequence

Psimp = 1P(1)2P(2) · · · (n − 1)P(n − 1)n

instead of P because P can be obtained from Psimp by using
Theorem 6. We call Psimp a simplified O-sequence. Using
a simplified O-sequence, Lemma 2 can be described as fol-
lows:

Lemma 3: If Psimp = 1P(1)2P(2) · · · (n − 1)P(n − 1)n is a
simplified O-sequence then

2P(2) · · · (n − 1)P(n − 1)n

is the simplified O-sequence of the 3D-dissection obtained
from the original 3D-dissection by sliding the prime wall of
room 1 until room 1 is deleted. �

Define that

X(P) = {i : Xi ∈ P( j) for some j ∈ [1, n − 1]},
Y(P) = {i : Yi ∈ P( j) for some j ∈ [1, n − 1]},
Z(P) = {i : Zi ∈ P( j) for some j ∈ [1, n − 1]}.
Let PX[resp. PY and PZ] denote the sequence obtained

from Psimp by deleting i, Xi, Yi, and Zi for every i ∈ X(P)
[i ∈ Y(P) and i ∈ Z(P)]. For example, Psimp of the 3D-
dissection in Fig. 9 is 1X3X22Z33Y44, then X(P) = {2, 3}. By
deleting 2, 3, X2, X3, Y2, Y3, Z2 and Z3 from Psimp, PX=1Y44
is obtained. Note that this is the simplified Q-sequence of
the 2D-dissection on the left face of the entire rectangular
solid in Fig. 9.

Lemma 4: PX[resp. PY and PZ] is the simplified Q-
sequence of the 2D-dissection on the left[front and top] face
of the entire rectangular solid, if we use symbols R and B
instead of Y and Z[instead of Z and X, and instead of X and
Y].

Proof : The proof is by the induction on n.
The lemma holds for n = 1 trivially.
Assume that the lemma holds for any n ≤ k (k ≥ 1), and

consider the case when n = k+1. Let F be the 3D-dissection
represented by Psimp, and let F′ be a 3D-dissection obtained
from F by sliding the prime wall of room 1 until room 1 is
deleted. By Lemma 3, the O-sequence of F′ is

P′simp = 2P(2) · · · P(n − 1)n.

Since F′ has n − 1 = k rooms, we obtain, by the inductive
hypothesis, the simplified Q-sequence of the 2D-dissection
on the left face of the entire rectangular solid in F′,

P′X = j1P′( j1) j2P′( j2) · · · P′( jm−1) jm.

Assume that P(1) consists of Xs. Then, the 2D-
dissection on the left face of the entire rectangular solid in
F is obtained from the 2D-dissection represented by P′X by
replacing rooms j1, j2, . . . , jl with a single room 1 for some
l, and so is denoted by a Q-sequence

Q = 1P′( jl) jl+1P′( jl+1) · · · P′( jm−1) jm

by Theorem 4. On the other hand, we have

P(1) = Xjl X jl−1 · · · Xj1 .

since the associated rooms of 1 in F are j1, j2, . . . , jl. Hence,
we obtain that PX is obtained from P′X by deleting j, Yj,
and Zj for j = j1, j2, . . . , jl and by adding 1 from the left.
By Theorem 1 and (Parenthesis systems), we conclude that
Q = PX , and hence PX is the 2D-dissection on the left face
of the entire rectangular solid in F.

Assume that P(1) consists of Ys. Then, the 2D-
dissection on the left face of the entire rectangular solid in
F is obtained from the 2D-dissection represented by P′X by
inserting a room 1 from the front of rooms j′1, j′2, . . . , j′l , and
so is denoted by a Q-sequence
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Fig. 11 Position of Xl in P.

Q = 1Q(1) j1P′( j1) j2P′( j2) · · · P′( jm−1) jm,

whereQ(1) = Yj′1 Yj′2 · · ·Yj′
l′ . Notice that j′1, j′2, . . . , j′l′ are the

rooms such that each of the rooms is the associated rooms
of room 1 in F and on the front face of the entire rectangular
solid. On the other hand, we obtain

PX = 1P′(1) j1P′( j1) j2P′( j2) · · · P′( jm−1) jm

by the definitions ofPX andP′X , whereP′(1) is the sequence
obtained from P(1) by deleting i, Xi, Yi, and Zi for every
i ∈ PX . Notice that Yj is contained in P′(1) if and only if
room i is an associated room of room 1 and is on the left
face of the entire rectangular solid. Therefore, we conclude
that Q = PX , and hence PX is the 2D-dissection on the left
face of the entire rectangular solid in F.

By a similar argument, we can prove that PX is the 2D-
dissection on the left face of the entire rectangular solid in
F in the case when P(1) consists of Zs. �
Theorem 7: Let i be any integer with 1 ≤ i ≤ n − 1, and
assume that P(i) = Xrm · · ·Xr1 [resp. P(i) = Yrm · · ·Yr1 , and
P(i) = Zrm · · ·Zr1 ]. Then, for every integer l, rm < l ≤ n, at
least one of the following two conditions is satisfied:

1. P(i + 1), . . . ,P(rm − 1) contain neither Yl nor Zl[Zl nor
Xl, and Xl nor Yl];

2. P(rm), . . . ,P(l − 1) contain Xl[Yl, and Zl].

Proof : The theorem is proved by induction on n. The
theorem is trivial for n = 1.

Assume that the theorem holds for any n ≤ k, and con-
sider the case when n = k + 1. By Lemma 2 and the induc-
tive hypothesis, at least one of two conditions is satisfied for
every i ≥ 2. Assume without loss of generality that P(1)
consists of Xs. By Theorem 6, we have r1 = 2. Assume that
for some l with rm < l ≤ n

• P(2), . . . ,P(rm − 1) contain Yl or Zl, and
• P(rm), . . . ,P(l − 1) do not contain Xl.

Since P is a parenthesis system under the ordered pairing
of (Xk, k) by Theorem 6, P(1), . . . ,P(rm − 1) do not contain
Xl, and hence, we conclude that P(1), . . . ,P(l − 1) do not
contain Xl (Fig. 11).

Let P′ be the sequence defined as in Lemma 2, and P′X
the sequence obtained from P′ by deleting i, Xi, Yi, Zi for
every i ∈ X(P′), where X(P′) = {i : Xi ∈ P( j) for some j ∈
[2, n − 1]}. Since P(1), . . . ,P(l − 1) do not contain Xl, P′X
contains Yl or Zl between 2 and rm, which implies that the
region consisting of room r2, . . . , rm is not a rectangle on the
left face of the entire rectangular solid for the 3D-dissection
representing by P′ by Theorem 2 and Lemma 4. However,
this region must be a rectangle since by Lemma 2, the 3D-
dissection represented by P′ is obtained from the original

3D-dissection by sliding the prime wall of room 1 until room
1 is deleted. Hence, we have a contradiction. �

From Theorem 7, we have the following theorem.

Theorem 8: Condition 3 in Theorem 4 is satisfied. �
Theorems 5, 6, and 8 complete the proof of necessity

of Theorem 4.

3.1.2 Proof of Sufficiency of Theorem 4

The sufficiency is proved by induction on n.
If n = 1 then a P-sequence P is unique. That is

P = X1Y1Z11, which represents the O-sequence of the rect-
angular solid dissection consisting of only one room.

Assume for induction that the sufficiency holds for n <
n′, and consider a P-sequence

P = P(WX)P(WY )P(WZ)1P(1)2P(2) · · · P(n′ − 1)n′,

Since P satisfies Condition 1 in Theorem 4, we can assume
without loss of generality that

P(1) = Xrm Xrm−1 · · ·Xr1 .

Since P satisfies Condition 2 in Theorem 4, we can repre-
sent

P(WX) = P′(WX)X1

P(WY ) = P′(WY )Y1

P(WZ) = P′(WZ)Z1.

Let

P′ = (P′(WX)P(1))P′(WY )P′(WZ)2P(2) · · · P(n − 1)n.

Since then P satisfies Conditions 1, 2, and 3 in Theorem 4,
P′ also satisfies these conditions, and hence, by inductive
hypothesis, P′ is an O-sequence. Let

X(P′) = {i : Xi ∈ P( j) for some j ∈ [2, n − 1]},
and let P′X denote the sequence from P′ by deleting i, Xi, Yi,
and Zi for every i ∈ X(P′). Then, by Lemma 4, P′X is the Q-
sequence of the 2D-dissection on the left face of the entire
rectangular solid represented by P′. By Theorem 1 and the
definition of P′X , we can represent

P′X = P′′(WY )P′′(WZ)

rmP′(rm)rm−1P′(rm−1) · · · P′(r2)r1 · · · ,
where P′′(WY ) [P′′(WZ)] is a sequence of Ys [Zs]. Since
P satisfies Condition 3 in Theorem 4, we conclude that, for
every positive integer i ≤ m, P′(ri) contains neither Yk nor
Zk with k > i, and so, by Theorem 2, the region consisting of
rooms rm, rm−1, . . . , r1 on the left face is a rectangle. Hence,
we can obtain a rectangular solid dissection with n rooms
from the rectangular solid dissection represented by P′ by
inserting one room from the left of rooms rm, rm−1, . . . , r1,
and then P is the O-sequence of this new rectangular solid
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Fig. 12 Algorithm for decoding O-sequence.

dissection, which completes the proof of the sufficiency.
�

Notice that the above proof of the sufficiency presents
the decoding algorithm for an O-sequence in Fig. 12. This
algorithm perfomes in O(n) time.

3.2 Checking the Feasibility of a Code

The time complexity of checking the feasibility of a code is
O(n). It is easy to decide whether a given code P satisfies
Conditions 1 and 2 in Theorem 4. It is also easy to see that
the algorithm in Fig. 13 determines whetherP satisfies Con-
dition 3 in O(n) time. The stack S x[resp. S y and S z] in the
algorithm stores the simplified Q-Sequence of 2D-dissection
on the left[front and top] face of the entire rectangular solid.
If the room i is not a rectangular solid after inserted into the
entire rectangular solid, P does not satisfy Condition 3.

4. Size of a Solution Space of O-Sequence

The number of 3D-dissection which is dissected by only
rectangular and non-crossing walls is presented in [9]. Since
there is an one-to-one corresponding relation between an O-
sequence and a 3D-dissection which is dissected by only
rectangular and non-crossing walls, the number of codes of
O-sequence is equal to the number of 3D-dissection which
is dissected by only rectangular and non-crossing walls.

A size of solution space of 3D-CBL is less than
n!3n−124n−4†. However, the exact size of a solution space
of 3D-CBL is not written in [6].

3D-CBL can represent any 3D-dissection which is dis-
sected by only rectangular and non-crossing walls. How-
ever, there is not an one-to-one corresponding relation be-
tween a 3D-CBL and a 3D-dissection. Therefore, the size
of a solution space of 3D-CBL is larger than that of O-
sequence for the following reasons.

1. Several codes are decoded into the same 3D-dissection,
for example, both 3D-CBLs: S = {1, 2, 3}, L = {X, X},

Fig. 13 Algorithm for checking whether P-sequence P satisfies
condition 3 in Theorem 4.

T = {1010} and S = {1, 2, 3}, L = {X, X}, T = {110} are
decoded into the same 3D-dissection shown in Fig. 14.

2. Several other codes are not decoded into a 3D-
dissection. For example, 3D-CBL: S = {1, 2, 3, 4},
L = {X, Z, Y}, T = {10110110} is not corresponding to
3D-dissection. It is corresponding to an object shown
in Fig. 15.

The size of the solution space of each representation of
3D-dissections or 3D-packings is shown in Fig. 16, where
that of 3D-subTCG [2] is not shown since the number of

†In the literature [6], it is written as O(n!3n−124n−4).
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Fig. 14 A result of decoding from 3D-CBL: S = {1, 2, 3}, L = {X, X},
T = {1010} or S = {1, 2, 3}, L = {X, X}, T = {110}.

Fig. 15 A result of decoding from 3D-CBL: S = {1, 2, 3, 4}, L =
{X,Z, Y}, T = {10110110}. It is not 3D-dissection because a shape of room
4 is not a rectangular solid.

Fig. 16 Comparison of the number of codes: O-sequence, 3D-CBL [6],
3D slicing tree [5], DTS [4], Sequence-Triple [1], Sequence-Quadruple [3],
and Sequence-Quintuple [1].

its codes is not clear. Note that vertical axis is the number
of codes divided by n! The size of the solution space of O-
sequence is the second smallest.

5. Experimental Result

The O-sequence is usable to search 3D-dissections. We
search the 3D-dissections, each of rooms contains exactly
one block, with simulated annealing. Each room of 3D-
dissection is large enough to contain the assigned block, and
the volume of an entire rectangular solid of a 3D-dissection
is the minimum one. An objective of the search is to find
a placement of n blocks with smaller volume. In each it-
eration of simulated annealing, the algorithm constructs a
representation (3D-dissection and directions of blocks) from
the current representation of rectangular solids by perform-
ing one of the following three operations: (1) Exchange of
the blocks in a pair of rooms; (2) Rotating of a block; (3)
Deletion and insertion of a room. The details of deletion
and insertion are described in [10].

The algorithm was implemented in C language on a PC
with Pentium4 3.2 GHz. Fig. 17 shows a packing result for

Fig. 17 Resultant placement with simulated annealing (Time: 375 [sec].
volume ratio: 113%).

30 blocks made at random, which was obtained in 375 sec-
onds. The ratio of the volume of the entire rectangular solid
to the total volume of the blocks (volume ratio) is 113%.

6. Conclusion

In this paper, we proposed a string data structure, called O-
sequence, to represent any 3D-dissection which is dissected
by only non-crossing rectangular walls. There is one-to-
one corresponding relation between an O-Sequence and a
3D-dissection. We presented a necessary and sufficient con-
dition for a given sequence to be an O-sequence, and also
presented an algorithm for decoding an O-sequence into the
corresponding 3D-dissection, which performs in O(n) time.
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